A critical period for experience-dependent synaptic plasticity in rat barrel cortex.

نویسنده

  • K Fox
چکیده

Recordings were made from neurons in layers II, III, and IV of rat barrel cortex. The animals were raised either from the day of birth (P0) or from P2, P4, or P7 with just the D1 vibrissa protruding on one side of the face and the contralateral side intact. Follicles were not ablated, but vibrissae were carefully removed by applying steady tension to the base of each vibrissa. Deprivation was continued until the day of recording (P30-P90), though in most cases vibrissae were allowed to regrow for 4-7 d prior to recording. The area of cortex driven by stimulating the spared D1 vibrissa was found to be enlarged in uni-vibrissae animals, but the characteristic anatomical map of the barrel field, defined by cytochrome oxidase staining, retained its normal form. In animals deprived from P0, layer IV cells outside the D1 barrel responded with short latencies (5-10 msec) to D1 stimulation, a condition never observed in normally reared animals. Short-latency responses to stimulation of regrown, deprived vibrissae were still present in layer IV despite the deprivation. Plasticity decreased rapidly in layer IV between P0 and P4 as judged by two measures: first, the percentage of cells in neighboring barrels that showed short-latency responses to D1 fell from 30% in P0 deprived animals to 18% in P2 and 13% in P4 deprived animals. Second, the percentage of cells in barrels surrounding D1 with larger responses to D1 stimulation than to stimulation of their anatomically related vibrissa also fell from 37% in P0 to 23% in P2 and 12% in P4 deprived animals. The percentage of "shifted cells" showed no further reduction in P7 deprived animals (14%). Plasticity in layers II and III showed little sign of decreasing between P2 and P7 after an initial drop between P0 and P2. Therefore, deprivation started at P4 and P7 had a far greater effect on layers II and III than on layer IV. In animals deprived from P4 onward, not only were responses to D1 stimulation greater in barrels neighboring D1 (in layers II/III), but responses were smaller to principal vibrissa stimulation. This suggests increased lateral transmission from the "experienced" barrel and a failure of vertical transmission within the "deprived" barrels. These results show that changes in the balance of experience acquired through vibrissae can affect development of connectivity in the barrel cortex. The main locus of plasticity is cortical when deprivations are started at P4 and beyond.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex

Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Neuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats

Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...

متن کامل

Experience-dependent changes in basal dendritic branching of layer 2/3 pyramidal neurons during a critical period for developmental plasticity in rat barrel cortex.

In rat barrel cortex, development of layer 2/3 receptive fields can be disrupted by sensory deprivation, with a critical period ending around postnatal day (PND) 14. To determine if experience-dependent plasticity of dendritic morphology could contribute to the reorganization of synaptic inputs, we analyzed dendritic structure in acute brain slices using two-photon laser scanning microscopy (2P...

متن کامل

Experience-dependent plasticity of adult rat S1 cortex requires local NMDA receptor activation.

The effect of blocking NMDA glutamate receptors in adult rat cortex on experience-dependent synaptic plasticity of barrel cortex neurons was studied by infusing D-AP5 with an osmotic minipump over barrel cortex for 5 d of novel sensory experience. In acute pilot studies, 500 microM D-AP5 was shown to specifically suppress NMDA receptor (NMDAR)-dependent responses of single cells in cortical lay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 12 5  شماره 

صفحات  -

تاریخ انتشار 1992